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Chapter 6
MOTIONS AND TRANSFORMATIONS

6-1 FIGURES WITH THE SAME SIZE AND SE, PE.

Look at the following triangles. Do they have the same size and
shape?

Fig. 1.

One way to test whether or not they have the same size and shape is
to measure the sides of each triangle with a ruler and the angles of each
triangle with a protractor. If you obtain the same measurements for each

--triangle, then, as far as you can tell by your measurements, the triangles
do have the same size and shape.

In work on geometry that you have already done, you learned that if
you measure the sides (but not the angles) of two triangles, this is enough.
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If the measurements of the sides for one triangle are the same as the
measurements of the sides for the other triangle, then the measurements of
the angles for one triangle must also be the same as for the other triangle.
Can you state the theorem which showed this?

Using dividers or a pair of compasses to compare sides, test whether
the following two triangles have the same size and shape.

)

Fig. 2.

Look at the following circles. Do they have the same size and shape?

Fig. 3.

One way to test whether or not they have the same size and shape is
first to find the centre of each circle and then to measure the radius of each
circle. If the measurements are the same, then the two circles have the

----gaiiie-gize and shape.

Using compasses and a ruler, test whether or not the following two
circles have the same size and shape.
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Fig. 4.

(Remember to use the construction for finding the centre of a circle
which you learned in Cnapter 4.)

In our earlier work, if two triangles had the same size and shape we
said that the two triangles were congruent. If two circles had the same
size and shape, we said that the two circles were congruent.

Now look at the following two figures. Do these figures have the same
size and shape?

A

Fig. 5.

B

Clearly there are no simple measurements with ruler and compasses
that you can use to answer this question. Think hard and decide what you
would do if you had to get an answer.

One good way to get an answer is the following. Take a piece of
tracing paper (any thin paper that you can see through a little bit will do),
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and place this paper over figure A. Then, holding this paper so that it does
not move while you are writing on it, carefully trace, with your pencil, an
outline of figure A. Next, move the paper over to figure B and try to find
a position where the traced figure falls exactly on top of figure B. If you
succeed, then you will know that, as far as you can tell by your drawings,
the two figures do indeed have the same size and shape.

Do the above figures have the same size and shape?

CLASS ACTIVITY

For each of the following pairs of figures, test whether or not the two
figures have the same size and shape.

a.

b.



angliintindell1

0

Consider the following pair of figures.

A

Fig. 7.

B

Make a tracing of figure A above. Now compare this tracing with
figure B. You will find that you cannot make the tracing of A fall exactly
on B. Now turn the tracing paper over so that the tracing of A is on the
bottom. Place this over B and, looking through the paper, see if you can
make the tracing of A fall on B. You will find that the tracing can now be
made to fall exactly on B.

Shall we say that A and B have the same size and shape? In geometry,
mathematicians long ago agreed to use the words "same size and shape" in
such a case. We therefore do say that A and B have the same size and
shape.

In general, we say that two figures in the plane have the same size and
shape if a tracing of one can be made to fall exactly on the other, where we
may turn the tracing over if needed.

PROBLEMS 6-1

Do the following figures have the same size and shape?
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b.

c.

Fig. 8.

For each of the figures in Figure 9, make a tracing of the first figure.
For how many distinct positions of the tracing paper can you make the
tracing fall exactly on the second figure? (Include positions where the
tracing paper is turned over.)

a.

b.

4111.
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C.

d.

C.

1

1

Fig. Pl.

6-2 MOVING A FIGURE IN THE PLANE.

:By using tracing paper, we can take a. figure in the plane and make a
copy of it at a new position in the plane. Here is an example.

Consider the following picture.



Make a copy of this picture on your own paper, and call the plane of the
picture P. We are now going to make a copy of the triangle ABC at a
new position in P. We shall place this copy of the triangle ABC so that
point C falls on point F and line segment AC falls on the line of segment
EF. We do this as follows. Take a piece of tracing paper. Call this paper
T. Place paper T on top of P and make a copy of triangle ABC on paper
T. Next, move paper T so that point C of paper T falls above point F of
plane P, and line segment AC of paper T falls along line segment EF of
P. Keeping the paper in this position, copy triangle ABC from paper T
onto P. This may be done by using a point of your compasses or of your
dividers to prick through from paper T to P at points A, B, and C, of
paper T, and then using a ruler to draw the line segments between points
on P. Plane P will now look like this.

Fig. 11.
iu

Here we have used A', B', and C' to name the vertices of the tri-
angle in its new position.

When we have done all this, we say that we have moved the triangle
to a new position in the plane of P. There are now two triangles in P:
triangle ABC and triangle A'B'C'. In such a case, we shall often think of
these as the same triangle in two different positions.

PROBLEMS 6-2A

1. Copy the following picture. In this picture, line L is parallel to AD.
Use tracing paper to move the rectangle ABCD so that point D falls
on point E of the circle and each side of the rectangle in its new posi-
tion is parallel to its first position.



A

Fig. 12.

2. In the same way, in the following picture, move the triangle ABC so
that the point .0 falls on its original position and the segment CB
falls along the line of segment CD.

B

Fig. 13.

3. In the same way, in the following picture, move triangle ABC so that
segment AB falls along segment DE, point A falls on point F, and
triangle ABC falls entirely inside the circle.

A

Fig. 14.

(Note that you will have to turn the tracing paper over before you copy_
the triangle back onto the Picture-.)

4. Show that Problem 1 has four different answers and that Problem 2
has four different answers.



Consider the following figure,
B

Fig. 15.

and the movement of the trac ing paper which carries A to C and AB onto
the line of CD. This gives Figure 16 below.

P

Fig. 16.

P'*

Now take any point in the original figure. Call it P. The same move-
ment of the tracing paper which carries the triangle to the top of the square
also carries the point P to a new position P'. We can get P' by marking
P on the tracing paper at the same time that we copy the _triangle and then
pricking through, after we have moved the tracing paper.

The following picture shows the result for several different points
P10 1321 P. P1' is the new position of Pi; P2' is the new position of
P2 ; and P3t is the new position of P3 .

Note that in this movement of the tracing paper, some points may move
farther than others.
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(Indeed, we can see that there is one point which does not get moved

at all. Its new position is the same as its old position. This point is marked

Q in Figure 17.)
Sometimes a movement of the tracing paper will move the individual

points in a figure, but leave the final form and position of the entire figure

unchanged. For example, if we add the following equilateral triangle to

Figure 17,

Fig. 18.

then the movement described before gives the following result.

PIPS' PA'

Fig. 19.

Here the new position of P1 is the same as the old position of P2,

the new position of P2 is the same as the old position of 1)3, and the new

position of P3 is the same as the old position of P1. Each point of the

triangle has moved, but the whole triangle in its new position has come out

exactly on top of its old position.
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If, in a movement;a point (like the point Q in the example above) has
its new position the same as its old position, we say that it is a fixed-point
of that movement.

If, in a movement, a figure (like the triangle P1 P2 P3 in the example
above) has its new position fall exactly on its old position, we say that the
figure is invariant under the movement.

PROBLEMS 6-2B

Consider the movement which carries AABC to AdtPB'C' in the following
picture.

Fig. 20.
.P2

Where does it carry points P1, P2, and P3? Does this movement
have any fixed points ?

2. Consider the movement which carries AABC to AATIC'.
A'

190
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What does it do to the point P1? To the point P2? To the point P3?

To the circle D?

3. Consider the movement which carries L ABC to Ail 'B'C' in the following

picture.

.0*

L1

Fig. 22.

L3

Where does it carry the line L1? Where does it carry the line L2 ?

Where does it carry the line L3? (Note: you will have to turn your tracing

paper over to obtain this movement.)

Challenge Problem

4. a. In Problem 3, what are the fixed points of the movement?

b. For the movement of Problem 3, describe all lines that are
invariant under the movement.

How many distinct motions carry triangle A onto triangle B?

P

A

Fig. 23.

What does each of these movements do to the point P?
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USING RULER AND COMPASSES TO MOVE FIGURES AND POINTS

.4. If we wish to move a figure like either of the two below,

Fig. 24.

we must use tracing paper and prick through many points of the figure. But
if we have a figure made up entirely of straight line segments and circular
arcs, we can move it by ruler and compasses without using tracing paper at
all. Our earlier work in geometry shows us how to do this. For example,
in the following picture (which is the same as Figure.10 in this section)

B

Fig. 25.

we can move triangle ABC so that C falls on F and AC falls on the line
of EF as follows. Extend segment EF. Measure distance AC and mark

-off an equal distance from F on EF extended. This gives a point Al on
EF extended. Draw an arc with centre F and radius BC. Draw an arc
with centre A' and radius AB. Take the intersection of these arcs as B'.
Draw the segments A'B' and FB'. When you finish, your figure should
look like this.



..,

A'

Fig. 26.

Here is another example. Move the line segment AB parallel to it-
self so that point A falls on point C in the following picture.

,,.
B

Fig. 27.

C

To solve this, draw segment AC and extend it beyond C to E. Then
use compasses to obtain point D so that DCE equals BAC in measure.
Draw CD and locate B' on its extension so that CB' = AB. When you are
finished your figure will look like this.

A.<-<
B

Fig. 28.

CB' is the new position of AB that we wanted.
Let ABC be a triangle. Assume that a certain movement of the trac-

ing paper carries A to A', B to B', and C to C'. If we know the positions
of A ABC and A A 'B'C', and if we are given any point P, we can then use
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compasses to find where the same movement carries P. The construction is
. very simple. (See Figures 29 and 30 below).,

With Bias centre, draw a circle of radius BP. With A' as centre,
draw a circle of radius AP. If P lies on AB, then these circles intersect

i

t two points of intersection

at one point, and we take this point of intersection for the new position of P.

Fig. 29.

Pi
(new position of P)

If P does not lie on AB, then these circles intersect at two points which lie
on opposite sides of AT'. In this case, see if P lies on the same side of
AB as C. If so, choose, as the new position of P, that point of intersection
which lies on the same side of Atli?' as C'. If not, choose that point of
intersection which lies on the opposite side of AD, from C'.

The following picture shows this construction for the case where P is
not on the same side of AB as C.

I;Pnew position of P)

P
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The use of ruler and compasses to move a figure or point often gives
a more accurate result than the use of tracing paper. In the rest of this
chapter we are going to study some of the things that happen when we move
figures and points in the plane. We shall find that if we move a figure, or
part of a figure, this can often help us to find new facts about the original
figure. Often, in order to carry out a proof, it will be enough to imagine the
movement and then make a rough sketch of the result, without using tracing
paper or doing all the details of a ruler and compasses construction.

..-

PROBLEMS 6-2C

.

..

1. Use ruler and compasses to do Problem 2 in Problems 6-2A.

2. Do the same fcr Problem 3 in Problems 6-2A.

3. Do the same for Problem 1 in Problems 6-2A.

4. In the following figure, a certain movement of the tracing paper
carries A ABC to AA'B'C'. Use compasses to find where this
movement carries the points D, E, and F.

B

0

F

Fig. 31.

Where does this movement carry the triangle whose vertices are D,
. E, and F?

5. a. If a movement carries point A to point A' in the following picture,
what are all the possible new positions of point P?
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A

p

Fig. 32.

A'

b. If a movement carries A to A' and B to B', what are all the
possible new positions of the point P?

8

A

:Fig. :33.

c. If a movement carries A to A', B to B', and C to C', what
are all the possible new positions of the point P?

B

Challenge Problem

C

A

Fig. 34.

C'

A"

B'

6. State a general rule which covers the cases described in Problem 5.
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15-3 RIGID MOTIONS.

In the last section, we moved figures and points in the plane by sliding

a piece of tracing paper to a new position. Let us now imagine a large (in
fact infinite) piece of tracing paper on tc:, of the plane. By copying from the

plane onto the tracing paper and then sliding the tracing paper to a new posi-

tion (or possibly turning it over and sliding it) we can move a figure in the

plane. Indeed, given a change in position of the tracing paper, we can see
where, in the plane, that change of position carries any given point, line, or
figure that we are interested in. Such a change in position over the entire,
plane is called a rigid motion. Given a rigid motion and given a point P, the
new position of P is called the image of the old position of P. Given a figure,
the new position of the figure is called the image of the old position of that
figure. If P' is the image of a point. P under a given rigid motion, we some-
times say that the motion maps P to P'.

A rigid motion in geometry is much like a function in algebra. Just
as a function on the real numbers is a way of assigning to every real number
x a real number y called the value of the function at x, so a rigid motion T
is a way of assigning to every point P in the plane a point P' called the image
of P under the rigid motion. In algebra, if f is a function and x is a real
number, we sometimes write the value of f at x as f(x). Similarly, in geo-
metry, if T is a rigid motion and P is a point, we sometimes write tha image
of P under T as T(P). This notation gives us a short and useful way to say
things about rigid motions. For example we can now restate the definition of
fixed-point as follows.

P is a fixed-point of T if and only if VP) = P.
We have spoken of a rigid motion as a change in position of an imaginary

piece of tracing paper, and we have talked about movement of this paper. It
would be better to speak of a rigid motion simply as a new position of the en-
tire piece of tracing paper. In our study of geometry it does not matter what
path we follow during the actual movement of the paper. All that matters is
the final position of the paper. Thus we see that a rigid motion is, in fact,
a function (of a certain kind) from the plane into itself.
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What if we take our infinite tracing paper and do not move it at all?
In this case, the new position of the infinite sheet of tracing paper is the
same as the old position. Since there is no change in position, it is
natural to ask whether or not we wish to call this function from the plane
into the plane (where, for every point P, the image of P is P itself) a
rigid motion. We shall find it useful to call this function a rigid motion,
even though no change in position has occurred. This rigid motion is called
the identity motion, and we often write it as I. Thus we have, in our

,
notation:

for any point PI I(P) = P.
(Hence every point is a fixed point of the identity motion.)

We now list several important facts about rigid motions. These facts
hold for all rigid motions. Since they hold for all rigid motions, we say that
they are properties of rigid motions. Let T be a rigid motion defined by
the change in position of an infinite piece of tracing paper.

(1) If P and Q are points in the plane, if P' =

T(P), and if Q, = T(Q), then the distance PQ
is the same 3 s the distance P'Q'.

(2) If P and Q are distinct points, if P' = VP),
and if Q' = 21(Q), then PI is distinct from Qi.

(3) For every point Q there is a point P such
that Q = T(P). That is to say, every point
is an image of some point.

(4) The image of any straight line is a straight
line.

(5) If P, Q, and R are distinct points, and if
P' : T(P), (2, = T(Q), andRI = T(R), then
P'Q'R' is the image of PQR and P'sfi'R' =

PQR in measure.

(6) If two straight lines are parallel, then their
images are parallel.
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These six properties are obvious from the tracing paper idea of a
rigid motion. Consider Property (6) for example. If two lines are parallel,
then their copies on the tracing paper are parallel, and these copies remain
parallel as we move the tracing paper. Hence the images of the lines must
be parallel.

It is an interesting and surprising fact that, if we assume Property (1)
for rigid motions (in other words, if we take Property (1) as a postulate),
then we can prove Properties (2), (3), (4), (5), and (6) as theorems, We can
do this without using the idea of tracing paper at all. These proofs will not
be given here as part of your geometry course. If you are interested in
looking at these proofs, you will find them in the appendix at the end of this
chapter.

Sinus Property (1) is so basic, we give it a special name. It is called
the isometric property. If a functioii from the plane into the plane has Pro-
perty (1), we say that the function is isometric., -

If a function is isometric, must there be a change in position of our
infinite tracing paper which will give us the function? We shall see, in
Section 6-6, that the answer to this question is yes. The idea of an isometric
function and the idea of a rigid motion (as given by change in position of
tracing paper) are therefore completely equivalent. Hence we could, if we
wished, study rigid motions without using the idea of tracing paper at all.
We would begin with the following formal definition:

IDEFINITION 6-1. A rigid motion is a function
from the plane to the plane which is isometric.

.w.01Y.Amm,M.ard, i
We could then base our whole study on this formal definition. We will
not do this here. In our work on rigid motions we will keep on using the
tracing paper idea to help us to understand. important facts and constructions.

A function from the plane into itself is often called a mapping on the
plane. In geometry, this word "mapping" has exactly the same meaning as
the word "function". As we have seen, if a mapping has the isometric pro-
perty, it is called a rigid motion.

.4-

199



If a mapping has both Property (3) and Property (4) it is called a

transformation on the plane. We have seen above that every rigid motion

is a transformation. In Problem 6 below, we shall give an example of a

transformation which is not a rigid motion.

In the rest of this chapter we shall study rigid motions in the plane.

In later work in mathematics, we shall study other kinds of transformations

as well. Transformations are important in both algebra and geometry.

In this chapter, we consider rigid motions of the plane onto itself.

Rigid motions can also be used in space. In space, we can no longer use the

tracing paper idea, but the formal definition of rigid motion can be giyen

exactly as above. That is to say, rigid motion is a mapping from space

into space with the property that for any points P1 and 132, if P1' is the

image of P1 and P2' is the image of P2, then P1'1321 = P1 P2 . In what

follows, our main study will be of rigid motions in the plane.

PROBLEMS 6-3

1. Let T be the rigid motion which takes A Pi P2 P3 to AP2P2'1,3, in the

following figure. Find the images of the points Qi, Q2, and Q3 under

T. What is the image of the square S under T?

P1 P2

P3

QI

Fig. 35.

Q2

Pit P2'

P3'

2. In the figure of Problem 1, what point has Qi as its image under T?

Draw the triangle that has A Pi P2 P3 as its image under T.
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Let T be the rigid motion which takes A P1 P2 P3 into A /31'132733' in the
following figure.

P3

Fig. 36.

What is the image of A Pir1321P3' under T? Can you draw the triangle
which has API P2 P3 as its image?

Challenge Problem

4. Let T be the rigid motion which takes A Pi P2 P3 into A PePeP31
in the following figure.

Pi'

P21

What is the image of A P1rP21/33, under T? Can you draw the triangle
which has A P1P2 P3 as its image?

5. Tell which of the following statements are true and which are false.
(a) Every rigid motion has a fixed point.
(b) There exists a rigid motion such that the image of each straight

line is either identical with that line or parallel to it.
(c) In every 'rigid motion there is some straight line which is paral-

lel to its image.
(d) In every rigid motion there is a line which is its own image.
(e) There is a rigid motion which has no fixed point, but has a line

which is its own image.
(f) There is a rigid motion that has no fixed point,. but which has a

triangle that is its own image.
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Challenge Problem

6. There are six different rigid motions which carry iABC to A DEF
in the following figure.

B

Fig. 38.

Locate the fixed points, if any, for each of these rigid motions.

7. Let L be a given line. We define a Certain mapping T by showing,

for any point P, how to find T(P).

Let P be given. If P is on 4 take T(P) to be P itself. If P is
not on L, drop a perpendicular from P to L, and locate a point on
the perpendicular which is on the same side of L and twice as far

from L as the point P. Take this new point to be T(P).

.
, Fig. 39.

Show that this mapping is not a rigid motion. (Hint: show that this

mapping is not isometric by finding two points P and Q such that
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. PQ # P'Q', where P' = T(P) and Q' = T(Q) . It then follows.

that T cannot be a rigid motion.)
NOTE: Tracing paper cannot be used to get this mapping. We can

-. get it if, in place of tracing paper, we use a thin rubber sheet that_.

. can be stretched after we trace onto it.

Challenge Problem

8. Let L be a given line. We define a certain mapping T by showing,
for any point P, how to find T(P).
Let P be given. If P is on L, take VP) to be P itself. If P is
not on L, drop a perpendicular from P to L, extend the perpendicular
beyond L, and locate a point on the perpendicular which is on the
opposite side of L from P and at the same distance from L as P.
Take this new point to be T(P).

. P
%

Fig. 40.

Show that this mapping is a rigid motion.
(Hint: show that the mapping is isometric by showing that for any
two points P and Q, PQ = P'Q', where P' = T(P) and Q'
T(Q) . It then follows that T must be a rigid motion.)
How can we move our tracing paper to get the mapping T?

Challenge Problem

9. Let 0 be a given point in the plane. Then for every point P in the
plane, we can locate a point P' (which will depend on P) as follows.

If P is 0, we take P' to be 0. If P is not 0, we draw a line
from 0 through P and extend it beyond P. We then find a point P'
on this line such that OP = PP'.
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This procedure defines a mapping T such that for any P, T(P) = P'.
Show that T is a transformation but not a rigid motion. (Hint: use
similar triangles for proving Property (4).)
NOTE: As in Problem 7, tracing paper cannot be used to get this
transformation, but we can get it if, in place of tracing paper, we
use a thin rubber sheet that can be stretched after we trace onto it.
The transformation defined in Problem 9 also has Property (5). (Can
you prove this?) If a transformation has Property (5), it is called a
motion. Hence T, in Problem 9, is a motion which is not a rigid
motion. Problem 7 gives an example of a transformation which is not
a motion. See Problems 10 and 11.

10. Show that T in Problem 7 does not have Property (5).

Challenge Problem

11. Show that T in Problem 7 has Properties (3) and (4). (T is therefore
a transformation.)

Challenge Problem

. 12. Prove that every transformation has Property (2) and Property (6).

6-4 USING MOTIONS TO SOLVE PROBLEMS.

There are many ways in which rigid motions can be used to help solve
problems in geometry. We shall look at some of these in later sections.
We give two examples here.

Example 1
The following figure shows a map of a river and a road. The figure

. also shows a scale of distance. It is desired to build a factory at a point on
w

the river that is within two kilometers of the road. What points of the river
. can be used?
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Fig. 41.

RIVER

1 Km

ROAD

Solution to Example 1
The road is a straight line. Use the rigid motion which moves this

straight line parallel to itself towards the river for a distance of two kilo-
metres (on the scale). This gives the following figure.

Fig. 42.

RIVER

NEW LINE

OLD LINE

The portions of the river that lie below the image of the road now give the
points that can be used for building the factory.

Example 2
In the following figure, construct a line segment which is parallel to

. line L, has length PQ, has one of its endpoints on circle C1 and has one

of its endpoints on circle C2.

205



Fig. 43.

Solution to Example 2
Use a rigid motion which carries the circle C1 a distance PQ towards

C2 in a direction parallel to L. The points of intersection of C2 with the
image of Ci now give the possible points on C2 for the segment to be
constructed.

Challenge Problem

Use ruler and compasses to construct a line segment as asked for in
the second example above. (There are two segments possible).

6-5 SPECIAL KINDS OF RIGID MOTION.

In the sections above, we have looked at different examples of rigid
motions. Some of these rigid motions had special properties that others
did not have. For example, some rigid motions had fixed points, others did
not._Ajs helpful to_have_ special names for some.of the different kinds of
rigid motions that are possible. In this section, we use the tracing paper
idea to show the meaning of some of these names. In following sections we
shall give more exact definitions.
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.
- . (1) A rigid motion is called direct if we do not need to turn the trac-

ing paper over in order to carry it out. If we do have to turn the tracing
.
. paper over, the rigid motion is called reversing.

(2) A rigid motion is called a translation if it is direct and can be
obtained by sliding the tracing paper, without rotation, so that every point
moves the same fixed distance.

(3) A rigid motion is called a rotation if it is direct and can be ob-
tained by rotating the tracing paper about some chosen fixed point.

(4) A rigid motion is called a reflection if it is reversing and can be
obtained by choosing a straight line and then turning the tracing paper over
and putting it back down so that every point on the chosen line falls on its
original position. The chosen line is called the line of reflection of the
rigid motion.

Examples
(1) In Problem 1 of Problems 6-2A, the rigid motion which yields

Figure 44 below

Fig. 44.

is a translation.

(2) In Problem 2, the rigid motion which yields Figure 45 below.
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Fig. 45.

.0"

is a rotation. (Here C is the fixed point of the rotation.)

(3) In Problem 3, the transformation which yields Figure 46 below
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Fig. 46.

is a reflection. (Here L is the line of fixed points which we call the line of
reflection.)

(4) In Problem 4 of Problems 6-3 we get an example of a rigid motion
which is neither a translation nor a rotation nor a reflection. The rigid
motion in this problem can be obtained by carrying out first a reflection and
then a translation. In the following figure, the straight line indicates the
line of reflection. Note that the translation leaves the line of reflection
invariant.
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/translation slides tracing
paper in direction of this arrow

We shall see later that every rigid motion is either a translation, a rotation,
a reflection, or can be obtained by carrying out first a reflection, and then a
translation as in the above example.

Certain words and ideas are especially useful in talking about whether
or not a motion is reversing. We give these words and ideas here.

Assume that we are looking down at the plane from above. Let A, B,
C be the vertices of a triangle in the plane. We say that we see the ver-
tices A, B, C in clockwise order 'if, as we look from A to B to C and
back to A, our eyes follow the same direction that they would follow if we

were watching hands move on the face of a clock. In the following picture,
A, B, C occur in clockwise order.

Fig. 48.
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In the following picture, A, B, C do not occur in clockwise order.

Fig. 49.

clock

Whether or not vertices occur in clockwise order depends upon the order in
which we name them. In the last picture above, A, C, B occur in clock-
wise order, while A, B, C do not.

If vertices do not occur in clockwise order, we say that they occur in
counter-clockwise order. Thus, in the last picture above, we say that A, B,
C occur in counter-clockwise order.

The following facts are now clear.
A rigid motion is direct if, for every triangle ABC in which A, B, C

occur in clockwise order the images A', B', C' occur in clockwise order.
A rigid motion is reversing if, for every triangle ABC in which A,

B, C occur in clockwise order, the images A', B', C' occur in counter-
clockwise order.

PROBLEMS 6-5

1. Look at the rigid motions described in Problems 1, 2, 3 and 5 of
Problems 6 -2B. Which of these are direct and which are revers-

-ing? Which are translations, which are rotations and which are
reflections?

2. We are given a rigid motion T. In the following figure, find T(Q)
assuming that T is a direct motion.
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Fig. 50.-

In the same figure, find T(Q) assuming that T is a reversing motion.

3. T is a rigid motion; Pi, P2 and Q are three distinct points.
(a) You are given T(Pi) and T(P2), and you are told that T is
direct. Can you find T(Q)?
(b) You are given T(Pi) and T(P2), and you are told that T is
reversing. Can you find T(Q)?

6-6 CONGRUENT FIGURES.

As we have seen, the image of a triangle under a rigid motion is
congruent to the original triangle (by SSS). It is also true that for any
two congruent triangles, there is a rigid motion which carries one triangle
to the other. This fact is easy to see from the tracing paper idea of rigid
motion.

Let ABC and A'B'C' be two congruent triangles. We must show
that there is a movement of tracing paper which carries A ABC to
AA'B'C'.

Imagine that we have made a tracing of A ABC. Since the triangles
are congruent, AB = A'B'. Slide the tracing paper so that A falls on A'
and B falls on B'.

(i) If C (on the tracing) now falls on the same side of A'B' as C', we
see that C must fall exactly on C' (since CAB = C'A'B' in measure,
and CBA = C'B'A' in measure).
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(ii) If, after the tracing paper is moved, C happens to fall on the

opposite side of A'B' from C', turn the tracing paper over and place
A over A' and B over B'. Now the new position of C falls on the
same side of A'B' as C', and, as before, C must fall exactly on C'.
Thus, in either case, we have a movement of the tracing paper which

carries A ABC to A AT . This movement defines the rigid motion
that we wanted.

We thus have the following:

Two triangles are congruent if and only if there is a rigid motion
which carries one triangle on to the other.

In the same way, we could show that two circles are congruent if and
only if there is a rigid motion which carries one circle on to the other.

These facts suggest that we use the idea of rigid motion to define con-
gruence for any two figures in the plane.

General definition of congruence. Let S and S'
be two sets of points in the plane. We say that
S is congruent to S' if there is a rigid motion
under which S' is the image of S.

This definition is different from the definitions of congruence for tri-
angles and circles that you were given in your earlier work in geometry.
We make the following two comments.

(a) For triangles and circles, the new definition agrees with the old
definition. (That is to say, two triangles are congruent under the new defi-
nition if, and only if, they are congruent under the old definition.)

(b) The new definition is closer to the informal idea of "same size
and shape" which led to our original study of congruent triangles. This
informal idea was, simply, that two triangles are congruent if we can move
one of them so that it falls exactly on the other.

NOTE ON ISOMETRIC MAPPINGS

In Section 6-3, we saw that every mapping obtained by using trac-
ing paper must be isometric. We also stated that every isometric mapping



can be obtained by using tracing paper. We can now see why this last fact

is true.
Let T be a given isometric mapping. Then T has the property that

it carries every straight line to a straight line. (This was Property (4) in

Section 6-3. The fact that every isometric mapping has this property is

proved in the Appendix to this chapter.) Let ABC be any given triangle.

Let A' = T (A), B' = T(B), and C' = T(C). Then the image of A ABC

under T must be A A'B'C', (by Property (4) of T); hence A A'B'C' is

congruent to A ABC (by the isometric property of T and SSS). What

we did at the beginning of this section shows that there is a movement of

tracing paper which carries A to A', B to B', and C to C'. Call the

mapping over the plane given by this movement: T'. Then T'(A) = T(A),

V(B) = T(B), and TV) = T(C). Now look at the construction given at

the end of Section 6-2. This construction shows that if we know where an

isometric mapping carries the vertices of a triangle, then we can find out

exactly where that mapping carries any other point. Given any point P,

the constructions for T and for T' must be the same. Hence, for any point

P, T (P) = T 1(P). Hence T and T' are the same mapping. Thus our given

mapping T can be obtained by a movement of tracing paper, which is what we

set out to show.

6-7 TRANSLATIONS.

Let two points A and B be given. Draw an arrow from A to B.

/
A

Fig. 51.

B
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For any point P we carry out the following construction. Through P draw
<---> *-->

a line parallel to AB. Call this line L'. (In case P lies on AB, we take
L' to be AB itself.) On L', we take a point Pt so that PP' = AB and 13'
lies in the same direction from P that B lies from A.

B

////
Fig. 52.

%.

Note that in this construction, if we draw an arrow from P to P', we get
an arrow with the same length and same parallel direction as the arrow
from A to B.

An arrow from one point to another point in the plane is called a
vector. We shall use the symbols U and V to stand for vectors. NOTE:
Do not confuse a vector with a ray. A vector has direction and length,
whereas a ray has direction only.

Let us give the name U to the vector from A to B in the above
construction.

DEFINITION 6-2. If Pt is obtained from P as
in the above construction, we say that P, is the
result of translating P by the vector U.

Let a vector U be given in the plane. The construction above can be
carried out for any point P. Hence we have a mapping T which we get by
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taking T(P), for any point P, to be the result of translating P by the

vector U.
Must the mapping T, which we get in this way, be a rigid motion? If

we can show that T is isometric, then, by our work in Sections 6-3 and 6-6,

we will know that T is a rigid motion. We can show that T is isometric as
follows. Take any points Pi and P2. The construction of Pi' and P2' gives

the following figure.

Fig. 53.

Pi

To show that T is isometric, we must show that P1 P2 = P1 r-P2 r

Consider the quadrilateral Pi PitP2'P2 . Pi Pi' is parallel to P2 Pet
since both are parallel to U by construction.. P1P1' = P2 P2', since both

are equal to the length of U by the construction. Hence PIPIT2P2' is a
parallelogram. (Recall that any convex quadrilateral with a pair of opposite

sides which are equal in length and parallel must be a parallelogram.) Hence

Pi P2 = PitP2', since opposite sides of a parallelogram must be of equal

length. (In the figure, we have assumed that P1P1' and P2 P2 ' are distinct

lines. In case they are the same line, the proof is even simpler.)
We have shown T is isometric, and we see that T is a rigid motion.

Is the rigid motion T direct or reversing? The following figure makes it

clear that T must be direct.
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Fig. 54.

What kind of rigid motion is T? Clearly, every such T is what we
called, in Section 6-5, a translation, and every translation can be obtained
by using a suitable vector U in the above construction for T. The vector
U simply gives the distance and direction "through which we slide the trac-
ing paper to get the rigid motion T.

We now list some more important facts about translations. In a
translation, every point moves the same distance. This is clear from the

,
construction.

Given any line L, the image of L in a translation is either parallel
to L or else is L itself. To see that this is true, look at Figure 53 where
we showed Pi P2 = P1 ?P2' . If P1 and P2 are two points on L, then P11 and
Pe are two points on the image of L, and, since P1 P2P2T2 is a parallel-
ogram, we have that L and its image are parallel. For what lines is it true
that the image of L is L itself?

Is the identity motion a translation? We agree to call it a translation,
although it is the translation in which every point moves zero distance. It
is given by a vector whose length is zero.

TRANSLATIONS AND COORDINATE AXES

--Suppose we take a point 0 which is the origin of a coordinate system.
Then we can draw our coordinate axes as in Figure 55.
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Fig. 55.

Suppose we are given a vector U from the point 0 to some point
with coordinates (m, n). Let P have coordinates (a, b). Let P' be the
result of translating P by U. What are the coordinates of P'? Clearly
PI has coordinates (a + m, b ÷ n). Can you show this?

PROBLEMS 6-7

1. Let T be the translation given by the vector U in the following figure.
Find the image of the triangle. Find the image of the circle. Find the
figure which has the circle as its image.

Fig. 56.

2. In Problem 1, what lines are carried into themselves by T (are
invariant under T)?

3. What is the result of applying first translation U and then transla-
tion V in the following figure?
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Fig. 57.

4. What is the result of applying first translation U and then translation
V in the following figure?

.0.

N
Fig. 58..

5. Let U be the vector between (0, 0) and (2, -4). For each of the
following points P, find the coordinates of 13' where P' is the result
of translating P by U.

P. (1, 1)

(-2, 4)

(7, -10)

6. In the last paragraph of this section (Figure 55), prove that P' has
coordinates (a + m, b +n).

Challenge Problem

7. You are told that a certain rigid motion T has the property that it
carries every point the same distance. Show that T must be a trans-
lation.

8. You are told that a certain rigid motion T has the property that,- for
every line L, the image of L is either parallel to L, or is L itself.t_
Show that T need not be a translation.

9. You are given two points P1 and P2 1 you are told that a certain rigid
motion T carries P1 to P1' and P2 to Fel and you are told that
Pi Pit.P2U32 is a parallelogram. Show that T need not be a translation.
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Challenge Problem

10. You are given the same information as in Problem 9 and you are also

told that T is direct. Show that T must be a translation.

6-8 ROTATIONS.

Suppose we have a fixed point 0 and a point P. If we move P to the
...

position P' (as in Figure 59) in such a way that OP = OP' and ,n(POP') = (3,

then we say that we have turned P through an angle g about 0.

P'

pig

Fig. 59.

We can also turn P through an angle g to get P". So it is possible
to turn P through the same angle g, but getting two different positions as
P' and P" in Figure 59.

In order to get just one result when we talk about rotating a point
through a given angle j3 about a fixed point, we need to give also the direc-

tion in which the angle (3 is turned.
For example in the above case when P moves to P', we actually

turned in the direction D that is the counter-clockwise direction. To get
P" we would turn in the direction We see clearly that fl is in the

. opposite direction to . So we use the following sign convention: the
direction 0 (counter-clockwise) will be taken as positive and the opposite
direction Q (clockwise) will be taken as negative.

f
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Whenever we say that a point (or for that matter anything else) is
. turned through an angle 13 > 0, we mean that the turning is in the counter-

clockwise direction, and when we say that a point is turned through an angle
13 < 0, we mean that the turning is in a clockwise direction.

DEFINITION 6-3. The point P is rotated about
0 through an angle (31 if P moves in such a way
that it remains a fixed distance from 0 while
OP turns through the angle [3.

Let a point 0 be given in the plane and let a value of 0 be given. For
any point P we can find a new point P' by rotating P about 0 through an
angle (3. Hence we have a mapping T which we get by taking T(P), for any
point P, to be the result of rotating P about 0 through an angle 0.

Must the mapping T, which we get in this way, be a rigid motion? If
we can show that T is isometric, then, by our work in Sections .6-3 and 6-6,
we will know that T is a rigid motion. We can show that 2' is isometric as
follows. Take any points P1 and P2. The construction of P1' and P2' gives
the following figure.

0

Pe

// .. P2/ .'/
.,./

/ . ...- pit. ..113 ......

/3/ °/ ..
- -

AV.= --

Fig. 60.

P1

To show that T is we must show that Ii P2 = PIT 2'.. .. ^In this figure, m(PIOP2) = g + mall'OP2) and m(P20P2') = /3 +
.

m (Pi '0P2) . Hence ni.(P1/a.p2) = m(pirap2r). Also, OP2 = OP2' and
OP,. = 0/31', by the construction. Hence, by SAS, A P1i0P2' is congruent to
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AP,. OP2. It follows that P1 P2 = P1 tP2 I (In the figure, we have assumed

that the interiors of P1aP2 and P1'0P2'. overlap. In case they do not over-

lap, the proof is the same except that m(P1/CP2) = m(Pl'aP21) = 0

m(pitap2).)
Therefore, T is isometric, and we see that T is a rigid motion. Is

the rigid motion T direct or reversing? The following figure makes it

clear that T must be direct.

0

J

Fig. 61.

*

What kind of rigid motion is T? Clearly every such T is what we

called, in Section 6-5, a rotation, and every rotation can be obtained by

using a suitable point 0 and value 0 in the above construction of T. The

point 0 is simply the point about which we rotate the tracing paper (imagine

a pin stuck through the tracing paper at this point), and j3 is the measure

of the angle (positive or negative) through which we turn the tracing paper.

If (3 = 90° in a rotation, we call that rotation a quarter turn. If

(3 = 180° in a rotation, we call that rotation a half turn. Some of the prob-

lems below have to do with these special rotations.

The identity motion is the rotation that we get for j3 = 0°. (The

identity motion is thus called both a rotation and a translation.)

Note the following fundamental fact about rotations. Let T be a rota-

tion through an angle 0. Let L be any line. Let L' be the image of L

under T. Then L and V form an angle whose measure is (3.
J.
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PROBLEMS 6-8A

.... %. .... ft.. ..... p

Fig. 62.

s.

1. If A is rotated 90° about 0, where will its image A' be?

0 A

Fig. 63.

2. If B is rotated 180° about X, where will its image B' be?

,Fig. 64.

3. If AB is rotated 90° about 0 where will AD' be?
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4. Where will a half-turn about 0 bring AB in Figure 66? If A 'B ' is

the image of AB from this rotation and you moved towards the right to

get from A to B, in what direction would you move to get from A'

to I 3' ?

0 A B

Fig. 66. -

..,

5. Where will a quarter turn about 0 bring AB?

A

0
B

Fig. 67.

6. Draw A '13 , the segment resulting from a half turn of AB about 0.

Can you show that ABAT ' is a parallelogram?

A

0.

B

Fig. 68.

7. Let T be a rotation of 120° about 0, the centre of the equilateral
triangle. Find the images under T of the circle, and the two triangles
in the following figure.

Fig. 69.

1
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8. If, in the figure, A' is the image of A under a rotation about a point 0
which lies along AA', where is this point 0?

A' A

Fig. 70.

9. Let A and A' be given. If A is moved to A' by a rotation about some
point 0, what is the locus of possible points 0?

Challenge Problem

10. If AB is transformed into AD' by a rotation about a point 0, how
can you find the position of 0? Is there a rigid motion which carries
AB to A'B', but is not a rotation about some point 0?

A B

A'\
Fig. 71.

B'

11. Triangle A'B'C' is the image of A ABC under a rotation. How would
you find the point about which it was rotated?

. 224

B

A .Z' C

Fig. 72.
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NOTE: The point about which a rotation is made is known as a centre

of rotation.

12. Prove that in a rotation through angle 13 any line makes an angle, j3

with its image.

ROTATIONAL SYMMETRY

Consider the equilateral triangle
ABC, with centre 0. Suppose we ro-
tate the triangle through 120° about 0.
Where will the sides of the image,
IA A 'B 'C', lie?

You will find they lie on the sides of o ABC, although now C' will be where
A was, A' will be where B was and B' will be where C was. That is;
this image will fall exactly on the original triangle. Also if we rotate the

triangle through 240°, we find that the sides of the image again fall exactly

on the original triangle.
Suppose we next take a square ABCD with centre 0. If we rotate

the square 120° about 0, will the sides of the image fall on the sides of the
original square? What happens when the square makes a quarter-turn about

0?

Fig. 73.

Consider the following figure. Could you find a rotation about 0 which

will give an image lying on top of the original figure? (Find as many angles
as possible lying between 0 and 360° for which this could be done.)

Fig. 74,
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If we restrict ourselves to a rotation less than a complete turn (that
is, less than 360°) do you think you can find a rotation about 0 which will

give an image coincident with the original figure in this illustration?

1
0

Fig. 75.

When we do a complete turn, every point returns to itself (and so we
have the identity motion). So a complete turn will always leave a point, a
line or any figure unchanged. If it is possible to rotate a figure less than
360° about a point 0 and bring it into coincidence with itself, then we say
that the figure has rotational symmetry about 0.

ROTATIONS AND COORDINATE AXES

Suppose we consider a point
0 which is the origin of a co-
ordinate system, and we draw
the coordinate axes as in the
figure. A point R on the x-
axis, when rotated 90° about
0, goes to R'. What is the
distance of R' from 0?
Suppose we considered another
point P distant p from 0
along the y-axis. Where will its
image I" lie under a quarter-turn
about- 0? Where will its image P"
lie under a half-turn about 0?

0

Fig. 76.

I t
r x

We can see that a half-turn will take R to R ", where R is a dis-
tance r from 0 along the positive x-axis and R" is a distance r from 0
along the negative x-axis. A quarter turn will move R to R', where R' is
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a distance r from 0 along the positive y-axis. Can you make similar
statements for the point P?

Let a point P have coordinates (a, b). What do the coordinates of P
become under a half turn about tin origin? Under a quarter-turn about the
origin?

PROBLEMS 6-8B

1. Which of the following figures have rotational symmetry?

(a) (b)

(d)

Fig. 77.

(c)

(e)

2. The number of distinct rotations that carry a figure onto itself for
rotations less than 360° is called the order of symmetry of that figure.
Find the order of symmetry of each of the figures in Problem 1.
Note that a figure whose order of symmetry is 1 does not have rota-
tional symmetry.

Challenge Problem

3. You are told that a rigid motion T has at least one fixed point. You
are also told that T is direct. Show that T must be a rotation.



6-9 REFLECTIONS.

Let a line L be given.

Fig. 78.

For any point 13, we carry out the following construction. Through P
we draw a line perpendicular to L. On this perpendicular we take a point
P' so that P' is on the opposite side of L from P, and P' is at the same
distance from L as P. (In case P is on Z, we take P' to be P itself).

P'
%

\

Qs

P

Fig. 79.

DEFINITION 6-4. If P' is obtained-from P as
in the above construction, we say that P' is the
result of reflecting P in L.

Let a line L be given in the plane. The construction above can be
carried out for any point P. Hence we have a mapping T which we get by
taking 7(P), for any point P, to be the result of reflecting P in L.

Must the mapping T, which we get in this way, be a rigid motion? If
we can show that T is isometric, then, by our work in Section 6-3, we will
know that T is a rigid motion. We can show that T is isometric as follows.
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Take any points P1 and P2. The construction of P1' and P2' gives

Figure 80 below.

"2
0

OVID
4M MOM. INE. 111 ANNO

MN. MP

X

Fig. 80.

'2

To show that T is isometric, we must show that P1 P2 = P2P2'.

In the above figure, PIN = P2N by the construction. Hence APINM

is congruent to PeNM by SAS. Hence PIM = P1'M and m(Pii/4N) =

m(PIQN) . Thus m (P1 MP2) = ni(P/b21). Since P2 M = P2 'M by the

construction, we have APIMP2 congruent to API'MP2' by SAS, and Pi P2 =

PI rP2 t (In the figure we have assumed that Pi, and P2 lie on the same side

of L. The proof is similar in case P1 and P2 lie on opposite sides of L.)

Hence T is isometric, and we see that T is a rigid motion. Is the

rigid motion T direct or reversing? The following figure makes it clear

that T must be reversing.
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What kind of rigid motion is T? Clearly, T is what we called, in Sec-
. tion 6-5, a reflection, and every reflection can be obtained by using a suitable

line L in the above construction for T. The line L is simply the line which
remains fixed after we have turned the tracing paper over.

The rigid motions which we call reflections are closely related to the
idea of reflection in a mirror. You have no doubt had the experience of
standing in front of a mirror and observing your image. The image looks
exactly like you and appears to be situated as far behind the mirror as you
are. standing in front of it. One big difference between you and your image,
however, is that your left side appears as the right side of the image and
vice versa. If you have been studying General Science or Physics in your
course, you would have come across very many interesting experiments
and examples dealing with reflection.

If T is one of the rigid motions in the plane which we are calling
reflections, then the line L is much like the mirror-image that you would
seem to see if you were to look at P in a mirror. The fact that T is re-
versing is like the fact that left and right are interchanged in a mirror-
image.

PROBLEMS 6-9A

1. The line m is parallel to a reflecting line L. Is its image m' gbing
to be a parallel to L also?

.........),,

2. If AB is parallel to the reflecting
line L, in what4direction will
the image A'B' point?

A 13
r

Fig. 82.
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3. The line AB is perpendicular at

0 to the reflecting line L. Draw
the image AT' of AB.

0
A B

Fig. 83.

4. If, in Problem 3, one moves froth left to right in going from A to B,
in what direction would he move in going from A' to Br?

5. Is the result in Problem 4 similar to that obtained for a half-turn about
0?

6. Draw the image of A ABC under
a reflection along L. Is A ABC ---7.--

A A'B'C', where AA'B'C' is the
image of A ABC? How do you know
this?

7. Draw the image of ABCD under a
reflection along L. Is this image
congruent to ABCD?

i

L

Fig. 84.

L

Fig. 85.
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8. What will the image of a circle be
. under reflection on a line ?

The arrow in the circle is clock-
wise. In what direction will the
arrow point in the image ?

L

Fig. 86.

9. If A'B' is the image of AB under a line reflection, where will the
line of reflection lie in the following diagrams ?

A e. B

A' B'

Fig. 87,

10. If AA'B'C' is the image of AABC under a line reflection, whele will
the line of reflection be?

B'

A'

C'

Fig. 88.

6.

A

C

11. Is it possible to get _a line_of reflection which will make A AIB'Cr an
image of AABC in Figure 89? If not, could you find a reason?

A'-. B'
C'
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AXIS OF SYMMETRY
MI= io 0 M

Consider the isosceles triangle ABC with AB F- AC and AD an
<---->

altitude. A reflection of this triangle along AD will
give a triangle AC'B' which is the same as triangle
ABC with C' falling on B and B' falling on C,

<--->
since the reflection of A in AD still gives A.

We see that, in the above reflection, each
point P of the triangle is reflected to give an

image point P' which is on the triangle. That is,
every point P and its image belong to the triangle.

Fig. 90.

DEFINITION 6-5. If for every point P of a fig-
ure its image 13, under a reflection on a line L
is also a point of the figure, the line L is an
axis of symmetry of the figure.

REFLECTION ALONG COORDINATE AXES

A point R at a distance r along the positive x-axis becomes point R'
at a distance r along the negative x-axis. Similarly a point Q at a distance
q along the positive y-axis will become point Q' at a distance q along the
negative y-axis.

E'
R'

* 1 .

r

Q

I

0

I

Fig. 91.

t.
R

x
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A point P(a, b) when reflected in the x-axis becomes point To
(a, -b). A point P(a, b) when reflected in the y-axis becomes point P"

b).

In general, the point (x, y) becomes (x, -y) under a reflection in the
x-axis and the point (x, y) becomes (-x, y) a reflection in the
y -axis .

PROBLEMS 6-9B

1. Lines L and m are the bisectors of the angles formed by the lines
AB and n in Figure 92 below. Show that L is an axis of symmetry
of the figure.

L

Fig. 92..

Show that L and m are the locus of points equidistant from the lines
AB and CD.

2. We say that a point P is reflected in a point 0, if its image 1" is such
that POP' is a straight line and PO = OP'. Show that this is the
same as doing a half turn about 0.

Challenge Problem

3. What will the coordinates of the point (a, b) become under a re-
flection along the line y = x?
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6-10 ONE MOTION FOLLOWED BY ANOTHER.

Let a rigid motion R and a rigid motion S be given. For example,
R might be the rotation about 0 which carries &ABC to 0 A 'B 'C' in
the following figure, and S might be the translation given by the vector

U in the figure.

pis

0

Q1 I.

Fig. 93.

Now for any point P, we carry out the following construction. First
we find the point R (P), which we call P'. Then we take P' and find the
point S(P'), which we call P". We can carry out this construction for any
point P. Hence we have a mapping T which we get by taking T(P), for
any point P, to be the point P" obtained from P by this construction.

Must the mapping T, which we get in this way, be a rigid motion? If

we can show that T is isometric, then, by our work in Sections 6-3 and 6-6,
we will know that T is a rigid motion. Take any points Pi and P2 . To show
that T is isometric, we must show that P1 P2 = P1" 132" But Pa P2 = PI IP2

since R is isometric, and PeP2' = P1"P2", since S is isometric. Hence
P1P2 = PeP2", and we have that T is isometric. Therefore T must be
a rigid motion.

DEFINITION 6-6. Given any two rigid motions
R and S, the new rigid inotion T which we get-
when R is followed by S is called the combina-
tion of R with S. We shall also refer to is as
simply "R followed by S".
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. Think for a moment of the tracing paper idea of a rigid motion. R
results from a certain movement of the tracing paper and S results from.

a certain movement of the tracing paper. If we make the first of these
movements and then follow it with the second, we reach a final position
(after the two movements) which could have been reached by a single move-
ment of the tracing paper. T is the rigid motion which results from this
single movement.

What kind of rigid motion is T? This will depend, of course, on the
rigid motions R and S. In Figure 93 above, T is a rotation about the point
marked Q. (You can check this with some tracing paper.)

What would happen if we carried out the two motions R and S in
reverse order? Then the figure would be as follows.

a
pit

eQ2

0

Fig. 94.

U
>

The resulting rigid motion, as you can check with tracing paper, is a rota-
tion about the point Q2. Clearly we get two different motions, depending
upon the order in which we take R and S.

This example tells us an important fact about combinations of rigid
motions: if R and S are rigid motions, R followed by S need not be the
same as S followed by R.

In special cases, R followed by S and S followed by R may be the
same. For example, if R and S are the translations given by U and V
in the following figure, you can check that, in this case, R followed by S
is the same as S followed by R. Each is the transformation T given by W.
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U

Fig. 95.

There are some general rules which we can use to tell what kind of
rigid motion T is if we already know what kinds of motion R and S are.
We now look at some of these rules.

TRANSLATION FOLLOWED BY TRANSLATION

We remind ourselves that in a translation, every point in a line or
figure moves the same distance and in the same direction, and that a trans-
lation can be described by means of a vector whose length gives the distance
that every point moves and whose direction gives the direction that every
point moves.

Fig. 96.

U

In Figure 96 the triangle A can be moved to A' by the translation
given by vector_ U__440 4' .moved to 4" by the translation given_by vector
V. Hence A is moved to A" by translating first by U and then by V.
But clearly A is also moved to A" by the translation given by W. The
three vectors are drawn to the right in Figure 96.
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This example suggests that a translation followed by another trans-
lation must always be a translation. We can state this precisely as
follows:

A translation R followed by a translation S equals a translation T.
If R is given by a vector R and S is given by a vector S whose initial
point is the end point of R (see Fig. 97) then T is given by vector T, with
initial point at the initial point of R and end point at the end point of S.

R

Fig. 97,

Try several pairs of translations like R and S on different figures
to test the correctness of the above statement.

PROBLEMS 6-10A

1. In Figure 96 above, find two other translations besides U and V which
have the same effect as W when used one after the other.

2. Draw a triangle A and two vectors U and V. Draw the image of A
under U; i.e., draw A' where A is moved by U. Draw A" where
Al is moved by V. Draw a vector showing a single translation
moving .A to A". Is this equal to U followed by V?

3. Draw three vectors 5, T, U in any position. Draw a vector V
showing a translation equal to translation S followed by translation
T, followed by translation U.

4. Draw a vector V showing a translation. Draw two vectors S and T.
at right angles showing translations such that V equals 5 followed
by T.



5. If A is moved to A' by translation T, where does T move A'?
If A' is moved to A" by T, where does T move A"? Draw a dia-
gram showing Al A', A", A'n, Al" where T moves each point
to the next one to its right.

EXAMPLE
In Figure 98, the line segment CD

can be moved to C'D' by a half-turn
about H followed by a translation W.
CD can also be moved to C'D' by a
half-turn about K. Any other figure
will be moved to the same position by the
half-turn about K as by the half-turn
about H followed by translation W. We say the half-turn about K equals
the half-turn about H followed by the translation W.

C D'

1

..

H

N. . ooe... .
IC 4, '

.. . 1.,

4,. .. .0%
.

.4,.. .
D -7------------4 C'

W

Fig. 98.

PROBLEMS 6-10B

1. In Figure 98, suppose CD is moved by translation W to a new
position, say C"D". Can you find a half-turn which will move
C"D" into CD?

In Figure 98, can you find a half-turn about another point and a
translation to follow it which is equal to a half-turn about K; i.e.,
moves CD to C'D'?

3. Suppose C"D" in Problem 1 is moved by the half-turn at H; i.e.,
CD is moved by W followed by a half-turn at H. Where is the
final position of CD? Is it the same as CD?

239



ROTATION FOLLOWED BI ROTATION

Consider a point P rotated about a point 0 through angle a to give
P' followed by another rotation of P' through angle 0 to give P".
Clearly a rotation of P through angle a + 0 will also give P".

However if the rotations are about two different centres the result
is not so simple to obtain. Here we shall only consider combinations of

some special rotationssuch as half-turnsabout different centres. We
'A Ave two facts about such combinations.A

(1) A half-turn about point H followed by another half-turn about H
is the identity.

Can you show this?

(2) The result of a half-turn about a point H followed by a half-turn
about a point K is a translation T, shown by a vector twice the vector from
H to K.

To show this, let P be moved
to P' by H and let P' be moved to
P" by K in Figure 99. Since H, K
are the mid-points of the sides, P'P
and P'P" of the triangle PPP",
then PP" = 2HK.

PROBLEMS 6-10C

Fig. 99.

pit

r

1. Mark two points H, K about one inch apart as centres of half-turns.
Take any three points P, Q, R and construct their images under the .

half-turn about H followed by the half-turn about K; i.e., find their .

images P', Q', R' respectively under the half-turn about H and then the
images of these points P', Q', R' under the half-turn about K, which
could be labelled P", Q", R" respectively. What can you say about
the length of the segments Pit, QQ", RR"? Are these segments

parallel to each other?

2. Let S be a translation shown by a vector LL'. Let F and G be any

two points whose distance apart is half the distance LL', and FG is
parallel to LL'. Show that the translation S = GF, where GF means
performing the half-turn about F followed by the half-turn about G.
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3. ABCD are die vertices of a parallelogram. Show that the half-turn
about A followed by the half-turn about B is the same motion as the
half-turn about D followed by the half-turn about C.

4. Let KH be a half-turn about H followed by a half-turn about K. What
would you mean by HK? Is HK = KH? If not, what is the difference?

5. Let H, J, K be three half-turns about points which lie on a line,
equally spaced with J between H and K. Show that KM = J. (How
would you define ICJH?)

6. P, Q, R, S are half-turns about points on a line shown in the diagram
with PQ = RS.

Show that SQP = R.

R Q R S

Fig. 100.

7. Let A, B, C, D be four half-turns about successive vertices of a
parallelogram. Show that CBA = D and that ABCD is the identity.

REFLECTION FOLLOWED BY REFLECTION

We shall get information about a reflection followed by a reflection
from the following problems.

PROBLEMS 6-10D

Consider two parallel reflecting lines L and m, with a point P first
reflected along L to give Pr and P' then reflected along m to give
1. Suppose the distance of P from L is p,

-and the distance between L. and m is d.
What is the length of PP"?

P

Pr?.

P1

L.

Fig. 101.
m

pre
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.
2. Use the same values as in Problem 1, but

now P is reflected first along m to give P1' and then 111, is

reflected along L to give Pi". What is the length of PRI"?

3. Consider the line segment PQ in
Figure 102. Can you determine
the image .P"Q" which results
from reflecting first along = =L and

then along m? Can you show that
this double reflection is equivalent
to a translation?

4. Replace the numbers 1 and 2 in
Figure 103 by the image of B
under reflection on f and the
image of B under reflection on
f, followed by reflection on g.

B

Fig. 102.

1

f 9

Fig. 103.

5. Let f and g be parallel lines three units apart. Find the second

images of the following points when reflected first in f, then in g,
where f is to the left of g.
(a) P, one unit to the right of f.
(b) Q, one unit to the left of f.
(c) R, four units to the left of f.
(d) S, one unit to the right of g.

6. Find the second images of the above points if they are reflected first

in g, then in f.

2

We see from the solutions to the above problems that the result of two

reflections along parallel lines is a translation shown by a vector perpendicular

to the lines of reflections of length twice the distance between the parallel lines.
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a
a

7. Let T be a translation shown by the
vector T. Find two parallel lines of
reflection f and g, so that f
followed by g equals the translation T.

A BASIC THEOREM

Fig. 104.

Let R and S be rigid motions, and let T be the rigid motion R followedby S. We looked at some rules above for finding out what kind of motion Tis, if we know what kinds of motion .R and S are. We now look at severalfurther facts that can be useful in getting information about T. These factswill not always tell us exactly what T is, but they can give some helpfulinformation. The first of these facts is the following.

If R and S are both direct, then T must be
direct. If R and S ar3 both reversing, then T
must be direct. If R is direct and S is revers-
ing, or if R is reversing and S is direct, then
T must be reversing.

We see from the definition of direct and reversing why this fact is true.For example, if R requires that the tracing paper be turned over and S re-quires that the paper be turned over again, then clearly, in the resulting rigidmotion T, the tracing paper has the same side up-that it had to start with.
The following basic theorem gives an important and useful fact aboutdirect rigid motions, as we shall see.

THE 64. Let T be a rigid motion. If Tis direct, then either T is a translation or T is
a rotation.

We shall not give the proof of this theorem here. Instead, we shalltell you how to find out exactly what kind of rigid motion T is, if you knowthat T is direct, and if you are given two triangles ABC and A'B'C'such that A' = VA), B' = T(B), and C' = 71C).



Do the following:
Draw the segments AA', BB', and CC'. At least two of these segments
have positive length (otherwise the triangles are the same). Draw the per-
pendicular bisector line for each of the segments with positive length. At
least two of these perpendicular bisector lines will be distinct. (Can you
prove this?) We show some of the possibilities in the following figures.
(In these figures, the perpendicular bisector lines are marked LI, L2, and

L3,)

L2

L1L3

Fig. 105.
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Choose two distinct perpendicular bisector lines. If these lines are
parallel, then you have T as the translation which moves every point parallel
to AA' through a distance AA'. If these lines intersect (call this point of
intersection 0), then you have T as the rotation about 0 which carries A
to A'.

The method will always work. We do not prove this here. If you can
prove that the method always works, you will be very close to having a proof
for Theorem 6-1.

Theorem 6-1 is a strong tool for getting information about combinations
of rigid motions. Look at the following example. In Figure 106, let R be a
reflection about Li and let S be a reflection about 1,2 . Let T be R
followed by S.

Fig. 106.

What kir.d of motion is T? We can find this very simply as follows.
Since R and S are each reversing, we know that T must be direct. Hence,
by Theorem 6-1, T must be either a translation or a rotation. But the
point 0 is a fixed point of T. Hence T must be a rotation about 0. (It
cannot be a translation, since no translation, except the identity motion, can
have a fixed point. T is not the identity motion, as we see from the points
P, P', and P" in the figure.) To find the angle of rotation, we need only
measure the angle POP" in the figure.

A second basic theorem can be given for rigid motions that are reversing.
We state it below as Theorem 6-2, but do not consider it further.
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DEFINITION 6-7. T is called a glide-reflection,
if T is R followed by S, where R is a reflec-
tion and S is a translation given by a vector
parallel to the line of reflection of R.

For example, if R is reflection in L, and S is the translation given

by U in the following figure, then the motion R followed by S, which we are

calling a glide-reflection, is the motion which takes A ABC to A A"B"C".

Fig. 107.

1.....

THEOREM, 6-2. Let T be a rigid motion. If T
is reversing, then either T is a reflection or T
is a glide-reflection.

Bence we know from these two theorems that every rigid motion is

either a translation, a rotation, a reflection, or a glide-reflection.

6-11 MORE EXAMPLES OF THE USE OF MOTIONS.

In Section 6-4 we looked at two examples of the use of rigid motions to

solve problems. Both of these examples used translations. We now look at



several more examples. These new examples will use rotations and reflect-
ions as well as translations.

EXAMPLE 1. Take any triangle ABC. Construct equilateral triangles
on AB and BC as in the figure.

Fig. 108.

We wish to show that AM = CN.
A congruent triangle proof can be used to show this (by using SAS to

get A ABM congruent to A NBC). But the idea of a rotation can be used
to get an even quicker proof as follows. Let T be a rotation about B
through an angle of 60 °. Clearly, T(N) = A (since BN = BA and m(NBA)
= 60, and T(C) = M (since BC = BM and m (CM) = 600). Thus
segment AM is the image of segment CN under T, and AM = CN by the
isometric .property of rigid motions.

PROBLEMS 6-.11A

-In tl-pe figure for Example 1, let Q be the point of intersection of AM
and CN. What is the measure of A\A?

2. In the following figure, ABC is any triangle, and squares have been
constructed on AB and BC.
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Fig. 109.

Use a rotation to show that AM = CN.

3. In Problem 2, show that AM is perpendicular to CN.

EXAMPLE 2. Let ABC be a triangle (Figure 110) in which
m(BAC) = nz(BaA).
It is a fact of elementary geometry that AE must be equal to BC.

Let us assume, for the moment, that you have forgotten this fact, but that
you do remember the basic properties of rigid motions. (These- were
listed as Properties (1) to (6) in Section 6-3). How could you use what you
do know about rigid motions to prove that AB = -BC?

Fig. 110.



One very simple proof would be as follows. Take the perpendicular

bisector of AC, call it L. Let T be the rigid motion: reflection in L.
Since T leaves the measure of an angle unchanged (Property (6) in Section

6-3), the image of AC under T must also be perpendicular to I. Hence,
since r is a bisector, the image of A is C and the image of C is A.
Since angles BAC and BCA have equal measure, the image of angle BA\C

must be angle BCA, and the image of angle BCA must be angle B2C.
<---> <> <---> *-->.

Hence the image of line AB is line CB and the image of line CB is line AB.
<---> <--->

Since point B lies on both AB and CB, the image of B must lie on both
<---> <-->
CB and AB. But this means that the image of B has to be B itself. Thus
the image of segment AB is segment CB, and the image of segment CB is
segment AB. By the isometric property, we have AB = CB, which is what

we wanted.

PROBLEMS 6-11B

1. Let ABC be a triangle in which AB = CB. It is a fact of elementary
geometry that m(CAB) must be equal to m(ACB). Assume, for the
moment, that you have forgotten this fact, but that you do remember
the basic properties of rigid motions. Use a rigid motion to prove
that m(C2B) = m(A6B). (Hint: let L be the bisector of ABC in

Figure 111, and make a reflection in L.)

t
I

Fig. 111.

249



Note: As we saw in Secondary Three, it is possible to get the facts of geo-
metry from a certain set of axioms about points, lines, angles, betweenness,
and congruence. It is also possible to get the facts of geometry in an en-
tirely different way by taking the idea of rigid motion as basic (along with
the ideas of point, line, and angle), and by starting with a set of axioms which
includes basic facts about rigid motions (such as those listed in Section 6-3).
This set of axioms is quite different from the set of axioms used in Second-
ary Three. In this new deductive theory, we can get all the same facts of
geometry that we got before, but the proofs are quite different, and the theo-
rems appear in a different order from before. Example 2 above and the
problem which follows it shows us what such proofs would be like. We do not
consider this new theory any further, and wes.do not give the set of axioms for
it here.

In the next two examples, we shall look at more difficult problems. In
each of these problems, rigid motions can be used to get a solution which is
shorter than any other solution known. In solving each problem, we will
allow ourselves to use facts that we know about rigid motions together with
any other facts of geometry that are already known to us.

EXAMPLE 3.

Let ABCD be any convex quadrilateral. Construct equilateral triangles
APB, BQC, CRD, and DSA as in Figure 112. Note that two triangles are
constructed towards the inside of the quadrilateral and two are constructed
towards the outside.
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We wish to show that the points R, Q, P, and S must form the ver-

tices of a parallelogram. We use rigid motions to prove this as follows.

Let T1 be a rotation through 60° about A, and let T2 be a rotation

through -60° about C. Let U be the rigid motion: T1 followed by 7'2 .

Since Ti and T2 are direct, U must be direct. Hence by Theorem 6-1 of

Section 6-10, U must be a translation or a rotation. If it is a rotation through

an angle j3, then, by our work at the end of Section 6-8, every line makes an

angle 13 with its own image. Let L be any line. Let L1 be the image of L

under T1 and let L2 be the image of L1 under T2 . Then LI forms an

angle of 60° with L, and L2 forms an angle of -60° with L1. Hence L2

forms an angle of 0° with L. Hence, if U is a rotation, it can only be a

rotation through 0°, which is tae identity motion. Thus U must be either the

identity motion or a translation.
Let us see where U carries the points S and P. Ti carries S to D

and T2 carries D to R. Hence U(S) = R. Also, Ti carries P to B,
and T2 carries B to Q. Hence U(P) = Q. Thus U is a translation
which carries segment SP to segment RQ.

By the isometric property of U, SP = RQ. Since every translation

carries a line parallel to itself (or else onto itself), SP is parallel to RQ.

Since the quadrilateral SQPR has a pair, of opposite sides which are equal

and parallel, it must be a parallelogram. This is what we set out to show.

EXAMPLE 4. In the following figure,
let ABC be any triangle. ABM, BCN and
CAO are equilateral triangles constructed
on the sides of triangle ABC. Let P, Q, 1?
be the centres of these three equilateral
triangles. (By centre of an equilateral
triangle we mean the point at which the
three perpendicular bisectors of the sides
meet. This is the point about which an
equilateral triangle has rotational sym-
metry.) 0

Fig. 113.

P2
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We wish to show that P, Q, and R must form the vertices of an
equilateral triangle.

Let Ti be a rotation through 120° about P. Let 712 be a rotation
through 120° about Q, and let T3 be a rotation through 120° about R. Let
U be the rigid motion: Ti followed by T2 followed by T3 . U is the re-
sult of three rotations, each of 120°. Hence, in the same way as in Example
3, we see that U is either a translation or a rotation through 360°. But this
means that U must be a translation or the identity motion.

From the figure, we see that T1 (A) = B, T2 (B) = C, and T3 (C) = A.
Thus U(A) = A, and A is a fixed point of U. But the only translation which
has a fixed point is the identity motion. Hence U must be the identity motion.

Now take the point P. Let P1 be the image of P under T1, let P2
be the image of Pi under T2, and let P3 be the image of P2 under T3.
Since Ti is a rotation about P, we see that P1 is the same as P. Since U
is the identity motion, we see that P3 is the same as P. Hence P1 Q, P2
and R form the following figure.

Fig. 114.

In this figure, PQ = P2Q by the isometric property of T2 ; and P2R =
PR by the isometric property of T3. Hence, by SSS, triangles .PQR and
P2 QR are congruent. Hence m (PQR)= M (P2 QR ) and m(PRQ) = m(P2RQ).
But 7n(PQP2) = 120° since T2 is a rotation through 120°, and m(PRP2) =

.120° since T3 is a rotation through 120°. Hence m(PQR) = m(P4P2)=
60°, and ) =1ni1PRi)2 = 60°. But any triangle with two angles
of 60° must be equilateral. This is what we set out to prove.



*APPENDIX TO CHAPTER 6

In Section 6-3) we listed six properties of rigid motion, and we said
that we could prove Properties (2), (3), (4), (5), and (6) from Property (1)
(the isometric property) without using the idea of tracing paper at all. We
give these proofs here.

Let T be a mapping from the plane to the plane which has Property
(1).

Proof of Property (2). If P and Q are distinct, then Q >0. By
Property (1), P'Q' = PQ. Hence P'Q' >0, and P' and Q' must be
distinct.

Proof of Property (3). Let Q be any given point. We shall find a
point P such that T(P) = Q. Take any triangle in the plane and let P3. )

P2, and P3 be its vertices. Let P1', P2 I) and Pe be the images of P1, P2,
and P3 under T. By Property (1), P... iPt.. 21 = P1 1)2, P2 IP3 I = 1)2 P3 y and
PePi = P3 P1. Hence, by SSS, Pi', P2' and P3' form the vertices of a .

triangle (and API P2 P3 "="7 A PitP2T3'). This means that the points Pi', P2 ty
P3' do not all lie on the same straight line. Now at least one out of the fol-
lowing three cases must occur. Either (i) P1 is the same point as Q, or
(ii) Q does not lie on P1'P2', or (iii) Q does not lie on PeP3'

7.-

(i) If P1 is the same point as Q, then P1 is the point
P that we want.

<----->
(ii) If Q does not lie on PeP2', we do the following.

With P1 as centre, we draw a circle of radius PA , and with P2 as
centre, we draw a circle of radius P2'Q. Let M and N be the points of
intersection of these two circles. We now have a figure that looks like the
following.
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Fig. 115.

Take the image of M, which we call M', and the image of N, which we call

W. By Property (1), P1'/If, = /31'N' = Pi Q, and P2 'M' = P2 'N' = P2 T.

Since M and N are distinct, M' and N' must be distinct (by Property (2)

which we have already proved). Hence M' and N' fall on opposite sides of

P1T2'. By SSS, A P2P2'Q s--- A PiTeMt E A PIPP2'N'. Hence, if Q is on
*----->

the same side of P1'132' as M', then Q must be the same point as M', and if
Q is on the opposite side of /32132 from M', then Q must be the same point

as W. If Q is the same as M', then M is the point P that we want; if Q is
the same as N', then N is the point P that we want.

(iii) If Q does not lie on /)2/33-', we carry out the same proof as for
(ii), but use P3t in place of P2'. We again find the point P that we want.

Thus in all three cases we can get the point P that we want. This ends

the proof of Property (3).
Proof of Property (4). Let L be a given straight line. Take two distinct

points P1 and P2 on L. Let P1' be the image of Pi and let P2' be the

be the image of P2. Let L' be the line determined by /31' and P2 1. To

prove (4) we need to show that every point on L has its image on L', and that

every point on L' is the image of some point on L.
Let Q be any point. By Property (3), which we have already proved,

there is a point P such that Q = T(P). If Q is not on L' then, since the

triangle Pi P2 P3 is congruent to the triangle PI, 'P2 '0, P is not on L.
Conversely, if P is not on L, then, by the same congruent triangles, Q is

not on V. This gives us the result we want, because it shows that every
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point on L must have its image on LI and, by Property (3), it shows that
every point on L' must be the image of some point on L.

AProof of Property (5). By Property (4), which we have proved, PiQ 'IV
L n

is the image of PQR. Since, by Property (1), and SSS, A PQR s: A Pk2 Rt,
we have that PiTt = PQR in measure.

Proof of Property (6). Let Li and L2 be two parallel lines. Let I411
be the image of L1, and let L2' be the image of L2. By Property (4), which
we have proved, Lit and L2' are straight lines. If L1' and L2' intersect
at some point Q, then, by Property (3) and Property (4) there is a point P
such that T(P) = Q, P lies on L1, and P lies on L2 . But if P lies on
L1 and L2, L1 and L2 cannot be parallel. This shows that L1' and L2'
must be parallel.

Thus we have proved Properties (2), (3), (4), (5), and (6) from Property

.
t



THEOREM.

LIST OF THEOREMS
AND OTHER IMPORTANT RESULTS

The medians of a triangle meet in a single point O. For
each median this point is located I of the way from the
vertex to the opposite side.

THEOREM. For any simple polyhedron, the number of vertices, edges,
and faces satisfies the equation V 7 E + F -= 2.

LEMMA. (To Theorem 2-1.) Two rectangles which have equal bases and
altitudes have equal areas.

The area of a rectangle with sides by w is w.

The area of a right triangle is half the product of its legs.

The area of a triangle is half the product of any base and
the corresponding altitude.

THEOREM 2-1.

THEOREM 2-2.

THEOREM 2-3.

COROLLARY 2-3-1.

THEOREM 2-4.

Page

13

24

44

45

46

46

If two triangles have equal altitudes, then the ratio of
their areas is equal to the ratio of the corresponding bases. 48

The area of a trapezium is half the product of the sum of
the parallel sides and its height.

THEOREM 2-5. The area of a parallelogram is the product of any base and
the corresponding altitude.

PROBLEMS 2-7, PROBLEM 12. A median of a triangle divides the triangle
into two triangles of equal areas.

THEOREM 2-6.

THEOREM 2-7.

If a right triangle has legs of lengths a, b, and hypotenuse
of length c, then c2 = a2 b2.

48

49

51

53

If the square of one side of a triangle is equal to the sum of
the squares of the two remaining sides, then the triangle is
right-angled, the right angle being opposite the first side. 54

PROBLEMS 2.8, PROBLEM 12. The median to the hypotenuse in a right
triangle is half as long as the hypotenuse. 58

PROBLEMS 2.8, PROBLEM 13. In a 30° 60° 90° right triangle the leg
opposite the 30° angle is one-half as long as the hypotenuse. 59

THEOREM 3-1. If a, b, c, and d are positive numbers, then
b
a

d
= c if and

only if ad = bc. 67
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THEOREM 3-2. ba = --41 if and only if

d c
(a)

(b) 1-c-1-=1:1-

(c) 1=a c

a +b b c +d d

1-1-11) = d(e)

(f)

THEOREM 3-3, If the same unit is used to measure the lengths of two
segments, their ratio is the same number no matter what
unit is used to measure them.

THEOREM 3-4. If a line parallel to one side of a triangle intersects the
other two sides in distinct points, then it cuts off segments
which are proportional to these sides.

COROLLARY 3-4-1. Using the figure above (Page 65) we also have
AD AE AB : AC
BD CE' BD EC'

COROLLARY 3-4-2. If DE cuts the extensions of the sides of AABC so that
D and E are on AB and AT respectively, then
AB AC

AE

THEOREM 3-5. If a line intersects two sides of a triangle and cuts off
segments proportional to these sides, then it is parallel to
the third side.

THEOREM 3-6. (The AAA Similarity Theorem) If a correspondence between
two triangles is such that the corresponding angles are
congruent, then the correspondence is a similarity.

COROLLARY 3-6-1. (The AA Similarity Theorem) If two angles of one triangle
are congruent to two angles of another triangle, theh the
two triangles are similar.

COROLLARY 3-6-2. If a line parallel to one side of a triangle intersects the
other two sides in distinct points, then it cuts off a triangle
similar to the given triangle.

COROLLARY 3-6-3. If two right triangles have an acute angle of one congruent
to an acute angle of the other, the triangles are similar.

COROLLARY 3-6-4. If two triangles are similar to a third triangle, they are
similar to each other.

COROLLARY 3-6-5. Corresponding altitudes of two similar triangles are in the
same ratio as any two corresponding sides.

COROLLARY 3 -6.6. Corresponding angle bisectors of two similar triangles are
in the same ratio as any two corresponding sides.



...

THEOREM 3-7.

THEOREM 3-8.

THEOREM 3-9.

(The SAS Similarity Theorem) Given a correspondence
between two triangles. If two pairs of corresponding sides
are proportional and the included angles are congiuent, then
the correspondence is a similarity.

(The SSS Similarity Theorem) Given a correspondence
between two triangles. If corresponding sides are proportional,
then the correspondence is a similarity.

The altitude to the hypotenuse of a right triangle subdivides
it into two right triangles that are similar to the given
triangle and to each other.

COROLLARY 3-9-1. Given a right triangle and the altitude from the right
angle to the hypotenuse:

(1) The altitude is the mean proportional between the two
segments formed on the hypotenuse.

(2) Either leg is the mean proportional between the
hypotenuse and the segment on the hypotenuse
adjacent to the leg.

THEOREM 3-10.

THEOREM 4-1.

THEOREM 4-2.

THEOREM 4-3.

THEOREM 4-4.

THEOREM 4-5.

Page

83

84

93

94

Regular polygons having the same number of sides are similar. 101

The intersection of a sphere and a plane containing the
centre of the sphere is a circle with the same centre and
the same radius as the sphere.

The line perpendicular to a radius of a circle at its
intersection with the circle is a tangent to the circle.

If a line intersects the interior of a circle, then it
intersects the circle in exactly two points.

A tangent to a circle is perpendicular to the radius at
the point of contact.

Let 1, be a line in the plane of a circle with centre 0,
and let K be the foot of the perpendicular from 0 to Z.
Then exactly one of the following three situations occurs:

(1) K is outside the circle, and the line .e does not
intersect the circle;

(2) K is on the circle, and L is a tangent to the circle;

(3) K is inside the circle, and the line I. intersects the
circle in exactly two points.

THEOREM 4-6.

THEOREM 4-7.

The perpendicular from the centre of a circle to a chord
bisects the chord.

The segment joining the centre of a circle to the mid-point
of a chord is perpendicular to the chord.
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109

110

111

112

113

113



THEOREM 4-8.

THEOREM 4-9.

THEOREM 4-10.

THEOREM 4-11.

THEOREM 442.

Page

If the perpendicular bisector of a chord lies in the plane
of the circle, then it passes through the centre of the circle. 113

No circle contains three collinear points. 113

In the same circle, or in congruent circles, chords which
are equidistant from the centre(s) are congruent. 113

In the same circle, or in congruent circles; any two
congruent chords are equidistant from the centre(s). 113

In the same circle, or in congruent circles, if two chords
are unequal, the shorter chord is at a greater distance
from the centre.

THEOREM 4-13. The line containing the centres of two tangent circles also
contains the common point of tangency.

THEOREM 4-14. Any three non-collinear points lie on exactly one circle.

COROLLARY 4-14-1. One and only one circle can be drawn through the
vertices of a given triangle.

THEOREM 4-15. If two tangents to a circle intersect, the angles which they
make with the line joining the point of intersection to the
centre of the circle are congruent, and the segments from
the point of intersection to the points of contact are also
congruent.

THEOREM 4-16. If the arc PQR is the union of the arcs PSQ and QTR
(with only the endpoint Q in common), then m(PQR) =
m(PSQ) + m(QTR).

THEOREM 4-17. The measure of an angle inscribed in an arc is half the
measure of the arc which subtends the angle.

COROLLARY 4-17-1. An angle inscribed in a semicircle is a right angle.

COROLLARY 4-17-2

THEOREM 4-18.

THEOREM 4-19.

. Two angles inscribed in the same arc are congruent.

The opposite angles of an inscribed quadrilateral are
supplementary.

The measure of an angle formed by two secants of a circle
intersecting at a point in the interior of the circle is one-half
the sum of the measures of the arcs intercepted by, the angle
and its vertically opposite angle.

PROBLEMS 4-3B, PROBLEM 10. The measure of the angle formed by two
intersecting tangents is equal to 180 minus
the measure of the minor arc intercepted.
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118

122

126

128

128

131
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THEOREM 4-20. The measure of the angle formed by a tangent and a secant
with the vertex at the point of tangency is one-half the
measure of its intercepted arc.

Page

133 ,

THEOREM 4-21. The angle formed by two secants or by a secant and a
tangent intersecting outside a circle has a measure that is
one-half the difference of the measures of the intercepted arcs. 134

THEOREM 4-22. In the same circle, or in congruent circles, if two chords
are congruent, then so are the minor arcs they determine.

PROBLEMS 4-3C, PROBLEM 8. If a pair of opposite angles of a quadrilateral
are supplementary, then the quadrilateral can be inscribed in
a circle.

THEOREM 4-23. If through any point P two lines are drawn intersecting
a circle, the product of the lengths of the segments of one
is equal to the product of the lengths of the segments
of the other.

THEOREM 5-1.

THEOREM 5-2.

THEOREM 5-3.

THEOREM 5-4.

THEOREM 5-5.

One and only one circle can be circumscribed about any
regular polygon.

A circle can be inscribed in any regular polygon.

If n points A, B, C, ...N are taken in order on a circle
so that AB =:. BC E a = ... =NA, the chords
A13. WC, ..., NA are the sides of a regular inscribed
polygon. The tangents drawn at A, B, C, ..:, N form
the sides of a regular circumscribed polygon.

The ratio of the perimeters of two regular n-gons is equal
to the ratio of the radii of their circumscribed or inscribed
circles as well as the ratio of their sides.

In any regular polygons of the same number of sides the
ratio of the perimeter to the radius is a constant.

PROBLEMS 5-1, PROBLEM 10. There exists exactly one circle that can be
inscribed in a regular n-gon.

PROBLEMS 5-3, PROBLEM 8. The area of any regular polygon is 2 r x p,
where r is the radius of the inscribed circle and p is the
perimeter of the polygon,

Let T be a rigid motion. If T is direct, then either T is
a translation or T is a rotation.

THEOREM 6-1.

THEOREM 6-2. Let T be a rigid motion. If T is reversing, then either T
is a reflection or T is a glide-reflection.
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Angle
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